

Instituto de Educación Secundaria Alfonso X el Sabio www.iax.es

DEPARTAMENTO DE MATEMÁTICAS CUADERNILLO DE PENDIENTES MATEMÁTICAS I 1° BACHILLERATO DE CIENCIAS

	PRUEBA 1:	PRUEBA 2:	PRUEBA GLOBAL:
	Del 12 al 14 de Enero	Del 13 al 15 de Abril	Del 4 al 5 de Mayo
Matemáticas I	Números reales y Álgebra Trigonometría Números complejos Vectores	5) Geometría analítica 6) Funciones elementales 7) Límites y continuidad 8) Derivadas y aplicaciones	Toda la materia

RECOMENDACIONES

- **❖** Para repasar la materia puedes realizar los ejercicios propuestos.
- ❖ Para preparar la **primera prueba** te recomendamos que practiques haciendo los ejercicios desde la actividad 1 hasta la actividad 8.
- Para preparar la segunda prueba te recomendamos que practiques haciendo los ejercicios desde la actividad 9 hasta la actividad 15.
- Cuantos más ejercicios hagas mejor preparado irás al examen.

PRIMERA PRUEBA:

ACTIVIDAD 1. RADICALES

- 1.- Reducir a índice común los siguientes radicales:
 - **a)** $\sqrt[3]{4}, \sqrt{5}, \sqrt[4]{7}$ **b)** $\sqrt[4]{a^3}, \sqrt[6]{a^2}, \sqrt[3]{a^4}$ **c)** $\sqrt{b}, \sqrt[3]{a}, \sqrt[4]{ab}$ Sol: a) $\sqrt[12]{4^4}$, $\sqrt[12]{5^6}$, $\sqrt[12]{7^3}$ b) $\sqrt[12]{a^9}$, $\sqrt[12]{a^4}$, $a\sqrt[12]{a^4}$ c) $\sqrt[12]{b^6}$, $\sqrt[12]{a^4}$, $\sqrt[12]{b^3} \cdot a^3$
- 2.- Extraer factores de los siguientes radicales:

- $\sqrt[3]{\frac{729}{512}}$ **f**) $\sqrt[3]{-125}$ **g**) $\sqrt[3]{\frac{b^6}{216}}$ **h**) $\sqrt[3]{\frac{-1}{27b^6}}$

- $\sqrt[5]{\frac{-32}{h^{10}}}$ j) $\sqrt[3]{\frac{216}{243}}$ k) $\sqrt{4x^6y^{12}}$ l) $\sqrt[4]{14641}$

 - Sol: a) $2\sqrt{2}$; b) $2\sqrt[3]{2}$; c) $\frac{3}{2}\sqrt{3}$; d) $8 \cdot a^3 \cdot b\sqrt{2ab}$; e) $\frac{9}{8}$; f) -5; g) $\frac{b^2}{6}$;
 - h) $\frac{-1}{2h^2}$; i) $\frac{-2}{h^2}$; j) $\frac{6}{7}$; k) $2x^3y^6$; l) 11
- 3.- Introduce los factores en el radical y simplifica:

- $2x\sqrt{x}$ **b**) $3\sqrt[3]{3}$ **c**) $\frac{2}{3}\sqrt[3]{9}$ **d**) $\frac{3}{8}\sqrt{\frac{2}{27}}x$
- **e)** $\frac{4x}{3}\sqrt{\frac{9}{4}}$ xy **f)** $3mx^2\sqrt{\frac{1}{3}}mx$ **g)** $\frac{2a}{3}\sqrt[3]{\frac{9a}{16}}$ **h)** $\frac{7}{2}\sqrt{\frac{8}{21}}$
 - Sol: a) $\sqrt{4x^3}$;b) $\sqrt[3]{3^4}$;c) $\sqrt[3]{\frac{8}{3}}$;d) $\sqrt{\frac{x}{96}}$;e) $\sqrt{4x^3y}$;f) $\sqrt{3m^3x^5}$;g) $\sqrt[3]{\frac{a^4}{6}}$;h) $\sqrt{\frac{14}{3}}$
- 4.- Simplifica:
- a) $\sqrt[3]{81b^7}$
- **b**) ⁵√128m¹⁰
- c) $\sqrt[7]{256b^{14}c^{11}}$

- **d**) $\sqrt[4]{b^7 m^3}$
- **e)** $\sqrt{2,\hat{7}b^3}$ **f)** $\sqrt[5]{\frac{1}{243}b^7m^{45}}$

- c) $\sqrt{8} \left(\sqrt{2} 5\sqrt{6} + \sqrt{18} \right)$ d) $\left(2\sqrt{3} + 5\sqrt{2} \right) \left(7\sqrt{3} 2 \right)$
- e) $\sqrt{\sqrt{13}+3} \cdot \sqrt{\sqrt{13}-3}$ f) $(9\sqrt{5}-7) \cdot (9\sqrt{5}+7)$

Sol: a) $7+5\sqrt{7}$ b) 2 c) $16-20\sqrt{3}$ d) $42-4\sqrt{3}+35\sqrt{6}-10\sqrt{2}$ e) 2 f) 356

- 10.- Calcular las siguientes sumas:
- **a)** $\sqrt{\frac{1}{3}} + \sqrt{27} \sqrt{12}$ **b)** $\sqrt{\frac{1}{2}} + \sqrt{2} + \sqrt[4]{4} + \sqrt[6]{8} + \sqrt[4]{64}$
- c) $5\sqrt[6]{8} 3(\sqrt{4} + \sqrt[10]{32}) 8\sqrt[8]{16} + \frac{1}{\sqrt{8}}$
 - Sol: a) $\frac{4}{3}\sqrt{3}$ b) $\frac{11}{2}\sqrt{2}$ c) $-\frac{1}{4}(23\sqrt{2}-24)$
- 11.- Realiza las siguientes sumas:
- a) $3\sqrt{2} + 5\sqrt{2} 7\sqrt{2} + 4\sqrt{2}$ b) $2\sqrt{3} 3\sqrt{3} + 5\sqrt{3} 4\sqrt{3}$
- c) $6\sqrt{2} 2\sqrt{2} + 4\sqrt{2} 5\sqrt{2}$ d) $2\sqrt{5} + 7\sqrt{5} 3\sqrt{5} + 8\sqrt{5}$
- e) $3\sqrt{2} 4\sqrt{8} + 5\sqrt{50} 3\sqrt{32}$ f) $\sqrt{24} 5\sqrt{6} + \sqrt{486}$
- g) $4\sqrt{12} 3\sqrt{75} + 6\sqrt{300} \sqrt{108}$ h) $\sqrt{75a^3b^2} + \sqrt{3ab^4}$

 - Sol: a) $5\sqrt{2}$;b)0;c) $3\sqrt{2}$;d) $14\sqrt{5}$;e) $8\sqrt{2}$;f) $6\sqrt{6}$;g) $47\sqrt{3}$;h) $(5ab+b^2)\sqrt{3a}$
- **12.-** Opera:
- a) $2\sqrt{20} + 4\sqrt{80} 5\sqrt{180} + 3\sqrt{125}$ b) $\frac{1}{4}\sqrt{128} + 6\sqrt{512} \frac{1}{2}\sqrt{32} 3\sqrt{98}$
- c) $\frac{2}{5}\sqrt{20} \frac{3}{5}\sqrt{80} + \frac{1}{2}\sqrt{180} + 6\sqrt{45}$ d) $\frac{4}{3}\sqrt{27} \frac{1}{3}\sqrt{243} + \sqrt{75} 2\sqrt{48}$
- e) $5\sqrt{44} 3\sqrt{275} + 6\sqrt{396} \sqrt{1331}$ f) $7\sqrt{28} 4\sqrt{63} + 5\sqrt{343} 2\sqrt{7}$
 - Sol: a) $5\sqrt{5}$; b) $75\sqrt{2}$; c) $\frac{97}{5}\sqrt{5}$; d) $-2\sqrt{3}$; e) $20\sqrt{11}$; f) $35\sqrt{7}$

ACTIVIDAD 2. LOGARITMOS

- 1.- Calcular:
- a) $\log_{2} 8$
- f) log ₂ 0,25
- $\log_{4} 64 + \log_{8} 64$ k)
- o) log 3 / log 81

- \mathbf{b}) $\log_3 9$
- g) $\log_{0.5} 16$
- $\log 0.1 \log 0.01$ 1)
- \mathbf{p}) $\log_2 3 \times \log_3 4$

- $\log_4 2$ c)
- **h)** $\log_{0.1} 100$
- m) $\log 5 + \log 20$
- q) $\log_9 25 \div \log_3 5$

- $\log_{27} 3$ d)
- i) $\log_3 27 + \log_3 1$
- $\log 2 \log 0.2$ n)
- r) $\log_a \sqrt[3]{a^2}$

- $\log_5 0.2$
- i) $\log_{5} 25 \log_{5} 5$
- ñ) $\log 32 / \log 2$
- $\log_{1/2} 2$ s)

 $Sol.\ a)\ 3;\ b)\ 2;\ c)\ 0,5;\ d)\ 1\ /\ 3;\ e)\ -\ 1;\ f)\ -\ 2;\ g)\ -\ 4;\ h)\ -\ 2;\ i)\ 3;\ j)\ 1;\ k)\ 5;\ l)\ 1;\ m)\ 2;\ n)\ 1;\ \tilde{n})\ 5;\ o)\ 0,25;\ p)\ 2;\ q)\ 1;\ r)\ 2/3;\ s)\ 2/3;$ **2.-** Determinar el valor de x en las siguientes expresiones:

- $\log_3 81 = x$ a)
- g) $\log_{x} 25 = -2$
- m) $\log_4 64 = (2x 1)/3$

- b)
 - $\log_{5} 0.2 = x$ **h)** $\log_{2x+3} 81 = 2$
- **n)** $\log_{6}[4(x-1)] = 2$

- c)
- $\log_2 16 = x^3/2$ i) $x + 2 = 10^{\log 5}$
- $\tilde{\mathbf{n}}$) $\log_{8}[2(x^{3} + 5)] = 2$

- d)
 - $\log_2 x = -3$ j) $x = 10^{4 \log 2}$
- **o)** $x = \log 625 / \log 125$

- $\log_7 x = 3$ e)
- **k)** $x = \log 8 / \log 2$
- $\log (x + 1) / \log (x 1) = 2$ p)

- $\log_{x} 125 = 3$ f)
- $\log_{9/16} x = 3/2$ 1)
- $\log (x 7) / \log (x 1) = 0.5$ **q**)

Sol: a) 4; b) -1; c) 2; d) 1/8; e) 343; f) 5; g) 1/5; h) 3; i) 3; j) 16; k) 3; l) 27/64; m) 5; n) 10; ñ) 3; o) 4/3; p) 3; q) 10

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES ACTIVIDAD 3.

9.- Determina el valor de x en las siguientes ecuaciones logarítmicas y exponenciales:

a)
$$\log 4x = 3 \cdot \log 2 + 4 \cdot \log 3$$

$$\mathbf{g)} \quad \frac{\log(7 + x^2)}{\log(x - 4)} = 2$$

b)
$$\log(2x-4) = 2$$

h)
$$2 \cdot \log (3x-4) = \log 100 + \log (2x+1)^2$$

c)
$$2 \cdot \log (3 - x) = -1$$

i)
$$\log_2(x^2 - 1) - \log_2(x + 1) = 2$$

d)
$$\log (x + 1) + \log x = \log (x + 9)$$

$$\mathbf{j)} \quad \log^2 \mathbf{x} - 3\log \mathbf{x} = -2$$

e)
$$\log (x + 3) = \log 2 - \log (x + 2)$$

k)
$$2 \cdot \log (x + 5) = \log (x + 7)$$

f)
$$\log (x^2 + 15) = \log (x + 3) + \log x$$

1)
$$\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$$

Sol: a) 162; b) 52; c) No; d) ±3; e) 4 y 1; f) 5; g) 9/8; h) -14/17 y -6/23; i) 5; j) 10 y 100; k) -3; l) 5

10.- Resuelve las siguientes ecuaciones logarítmicas:

a)
$$\log_3(x+2) + \log_3(x-4) = 3$$

b)
$$2^{2+x} - 2^{1+x} + 2^x = \frac{1}{2}$$
 c) $\log_3\left(\frac{x+1}{2x-1}\right) = 2$ **d)** $e^x - 6e^{-x} = 1$

d)
$$e^x - 6e^{-x} = 1$$

e)
$$\log 2 + \log(11 - x^2) = 2\log(5 - x)$$
 f) $\log_3(3^x - 8) = 2 - x$ g) $3^x - 3^{1-x} = 2$

$$\log_3(3^x - 8) = 2 - x$$

$$3^x - 3^{1-x} = 2$$

h)
$$2^{2x} - 2^x = 12$$

i)
$$3\log x - \log 30 = \log \frac{x^2}{5}$$

j)
$$\log(5\log 100) = x$$
 k) $3^{2x+1} - 5 = 11$

k)
$$3^{2x+1} - 5 = 1$$

1)
$$7^{3x-2} = 1$$

Sol: a)
$$x = 7$$
 b) $x = -1 - \frac{\log 3}{\log 2}$ c) $x = \frac{10}{17}$ d) $x = \ln 3$ e)
$$\begin{cases} x_1 = 3 \\ x_2 = \frac{1}{3} \end{cases}$$
 f) $x = 2$ g) $x = 1$ h) $x = 2$ i) $x = 6$ j) $x = 2$ k) $x = \frac{2\log 2}{\log 3} - \frac{1}{2}$ l) $x = \frac{2}{3}$

ACTIVIDAD 4. SISTEMAS LINEALES (METODO DE GAUSS)

1)
$$\begin{cases} x + y + z = 2 \\ 3x - 2y - z = 4 \\ -2x + y + 2z = 2 \end{cases}$$
5.C.D (1,-2,3)

13)
$$\begin{cases} x + y - 3z + w = 0 \\ x - y + z + w = 2 \\ x + 2y - 5z - w = -3 \\ x - 2y + 3z - 9w = -7 \end{cases}$$

5)
$$\begin{cases} -x - 3y + 2z = 4\\ 2x + y - 3z = 0\\ -3x + y + 6z = 2 \end{cases}$$
S.C.D. (5,-1,3)

37)
$$\begin{cases} 2x - 2y - z = 7 \\ 4x - 4y + 2z = 17 \\ 3x + 2y - 6z = -2 \end{cases}$$

$$\begin{cases} 3x - 4y + 2z = 1 \\ -2x - 3y + z = 2 \end{cases}$$

$$\begin{array}{l}
\mathbf{S.C.I.} \ (\lambda, 2-\lambda, \lambda, 1) \\
2x - 5y + 3z = 0
\end{array}$$

$$\begin{cases} 3x - 2y + 4z = 0 \\ -x + 5y - z = 0 \end{cases}$$

S.C.D.
$$(41/20,-73/40,3/4)$$

 $\begin{cases} x+y+z=515\\ x+3y-4z=0 \end{cases}$

2)
$$\{-2x - 3y + z = 2 \\ 5x - y + z = 5 \\ 5.1.$$

26)
$$\begin{cases} -x + 5y - z = 0 \\ x + 8y + 2z = 0 \end{cases}$$
S.C.I. (18\lambda, -\lambda, 13\lambda)

$$\begin{cases}
-9x + 8y = 0 \\$$
S.C.D. (160, 180, 175)

SISTEMAS NO LINEALES ACTIVIDAD 5.

1.
$$\begin{cases} x^2 + y^2 = 290 \\ x + y = 24 \end{cases}$$

5.
$$\begin{cases} x^2 + y^2 = 25 \\ x - \frac{3}{4}y = 0 \end{cases}$$

$$\begin{cases} y = 1 + 2x \\ x^2 + y^2 + 6x = 16 \end{cases}$$

xy = 8

13.
$$\begin{cases} x^2 - y^2 = 17 \\ x - y = 1 \end{cases}$$
 (9,8)

2.
$$\begin{cases} x^2 + y^2 = 9 \\ 2x + y = 3 \end{cases}$$

6.
$$\begin{cases} x^2 + 3xy = 22 \\ x + y = 5 \end{cases}$$

10.
$$\begin{cases} x = 3y - 1 \\ \frac{1}{x} - \frac{1}{y} = \frac{-1}{2} \\ (2,1); \end{cases}$$
 (1,2/3)

14.
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{3}{2} \\ (1,2);(2,1) \end{cases}$$
15.
$$\begin{cases} 4xy - 6y = 3 \end{cases}$$

3.
$$\begin{cases} x^2 + y^2 = 13 \\ y + 3 = 3x \end{cases}$$
(2,3); (4/5,-18/5)

7.
$$\begin{cases} 4x^2 - xy = 2(x+y) \\ y - x = 1 \end{cases}$$

15.
$$\begin{cases} 4xy - 6y = 3x - 8y = 5 \\ 3xy - 4y^2 = 3xy - 4y^2 - 4y^2 = 3xy - 4y^2 - 4y^2 = 3xy - 4y^2 - 4y^2$$

4.
$$\begin{cases} x - 2y^2 = 0 \\ y + 5 = 3x \\ (2,1); (25/18,-5/6) \end{cases}$$

8.
$$\begin{cases} x^2 - xy + y^2 = 7 \\ x + y = 5 \end{cases}$$
(2,3); (3,2)

$$\begin{cases} x + y = 6 \\ x + y = 6 \\ xy = 9 \end{cases}$$
 (3,3)

(2,4); (4,2)

16.
$$\begin{cases} 3xy - 4y^2 = 0\\ 3x - 2y = 1\\ {}_{(1/3,0);(2/3,1/2)} \end{cases}$$

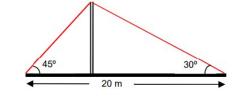
TRIGONOMETRÍA **ACTIVIDAD 6.**

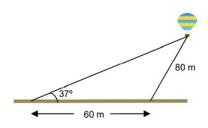
60. Resolver los siguientes triángulos y hallar su área (con * se indica el caso dudoso):

a) a=6 m, B=45°, C=105°

(Soluc: A=30°, b=8,49 m, c=11,59 m, S_{ABC} =24,60 m²)

b) a=10 dam, b=7 dam, C=30° (Soluc: c=5,27 dam, B=41° 38', A=108° 22')


c) b=35,42 dm, A=49° 38′, B=70° 21′ (Soluc: C=60° 1′, a≥28,66 dm, c≥32,58 dm, S_{ABC} ≥439,94 dm²)


d) a=13 m, b=14 m, c=15 m

(Soluc: A=53° 7' 48", B=59° 29' 23", C=67° 22' 48", S_{ABC} =84m²)

Problemas de planteamiento:

- 67. Un grupo decide escalar una montaña de la que desconocen la altura. A la salida del pueblo han medido el ángulo de elevación, que resulta ser 30º. A continuación han avanzado 100 m hacia la base de la montaña y han vuelto a medir el ángulo de elevación, siendo ahora 45°. Calcular la altura de la montaña.
- 68. Rosa y Juan se encuentran a ambos lados de la orilla de un río, en los puntos A y B respectivamente. Rosa se aleja hasta un punto C distante 100 m del punto A desde la que dirige visuales a los puntos A y B que forman un ángulo de 20º y desde A ve los puntos C y B bajo un ángulo de 120º. ¿Cuál es la anchura del río? (Soluc: *≘*53,21 m)
- 69. Tres pueblos A, B y C están unidos por carreteras rectas y llanas. La distancia AB es de 6 km, la BC es 9 km y el ángulo que forman AB y BC es de 120°. ¿Cuánto distan A y C? (Soluc: ≘13 km 77 m)
- 70. Se ha colocado un cable sobre un mástil que lo sujeta, como muestra la figura. ¿Cuánto miden el cable y el mástil? (Sol: cable=25 m; mástil =7,32 m)

71. Un globo aerostático está

sujeto al suelo mediante dos cables de acero, en dos puntos que distan 60 m. El cable más corto mide 80 m y el ángulo que forma el otro cable con el suelo es de 37º. Hallar la altura del globo y la longitud del cable más extenso. (Sol: ≘71,80 m y 119.31 m. respectivamente)

Ecuaciones trigonométricas:

57. Resolver las siguientes ecuaciones trigonométricas elementales:

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

(Sol: x=k·180°)

(Sol: $x=(2k+1)\cdot 180^\circ$)

(Sol: x=210°+k·360°; x=330°+k·360°)

- 58. Resolver las siguientes ecuaciones trigonométricas más elaboradas:
 - a) $\operatorname{sen} x + \cos x = \sqrt{2}$

(Sol: x=45°+k·360°)

o) $sen2x-2cos^2x=0$ (Sol: $x=90^{\circ}+k\cdot180^{\circ}$; $x=45^{\circ}+k\cdot180^{\circ}$)

b) sen x - 2cos 2x = $-\frac{1}{2}$

p) $\cos 2x - 3 \sin x + 1 = 0$ (Sol: $x = 30^{\circ} + k \cdot 360^{\circ}$; $x = 150^{\circ} + k \cdot 360^{\circ}$)

(Sol: 30°, 150°, ≅ 311°24'35" y ≅ 228°35'25")

q) $4 \text{sen}^2 x \cos^2 x + 2 \cos^2 x - 2 = 0$ (Sol: $x = k \cdot 180^\circ$; $x = 45^\circ + k \cdot 90^\circ$)

c) sen x cos x = $\frac{1}{2}$

(Sol: $x=45^{\circ}+k\cdot180^{\circ}$) | r) $4 \text{sen}^2 x + \text{sen} x \cos x - 3\cos^2 x = 0$

(Sol: x=36°52'11,6"+k·180°; x=135°+k·180°)

NÚMEROS COMPLEJOS ACTIVIDAD 7.

- 53. Calcular, aplicando el método más apropiado (es decir, operando en polar o en binómica) en cada caso dar el resultado en forma binómica:
 - a) $(1+i)^2$

(Soluc: 2i)

b) $(2-2i)^2$

(Soluc: -8i)

c) $(1+i)^3$

(Soluc: -2+2i)

d) $(2+3i)^3$

(Soluc: -46+9i)

e) $(1-i)^4$

(Soluc: -4)

f) $(-2+i)^5$

(Soluc: 38+41i)

g) $\frac{(1+i)^2}{4+i}$

 $\left(\text{Soluc}: \frac{1}{2} - i\right)$

i) $(i^4+i^{-13})^3$

(Soluc: -2-2i)

 $(1+i)^{20}$

- (Soluc: -1024)

- **k)** $(-2+2\sqrt{3} i)^6$
 - (Soluc: 4096)
- 1) $\frac{i^7 i^{-7}}{2i}$

- (Soluc: -1)
- **m)** $(4-4\sqrt{3} i)^3$
- (Soluc: -512)
- **n)** $(-2+2\sqrt{3} i)^4$
- (Soluc: $-128 + 128\sqrt{3}i$)

o) $(\sqrt{3} - i)^5$

- (Soluc: $-16\sqrt{3} 16i$)
- $\left(\text{Soluc}: \frac{2}{17} + \frac{8}{17}i\right) \quad \left| \quad \mathbf{p} \right) \left(\frac{3\sqrt{3}}{2} + \frac{3i}{2}\right)^3$
- (Soluc: 27i) (Soluc: 215i)

r) $\frac{(-1+i)^2}{(1+i)^3}$

q) $(-1+i)^{30}$

- Soluc: $-\frac{1}{2} + \frac{i}{2}$
- **54.** Dados los complejos $z_1 = \sqrt{3} i$, $z_2 = 3i$ y $z_3 = 1 + i$, calcular las siguientes expresiones, dando el resultado en binómica:

- **a)** $\frac{Z_1 + Z_2}{Z_1}$ **b)** $Z_1 \cdot Z_3$ **c)** $(Z_1)^4$ **d)** $\overline{Z_2}$ $\left(Sol : a) \frac{2 + \sqrt{3}}{2} + \frac{2 \sqrt{3}}{2}i; \ b)(\sqrt{3} + 1) + (\sqrt{3})i; \ c) 8 + 8\sqrt{3}i; \ d) 3i \right)$
- **55.** Dado el complejo $z = \sqrt{2} \sqrt{2} i$, calcular $z^5 \cdot \overline{z}$ (Soluc: -64)
- 57. Calcular las siguientes raíces (dando el resultado en binómica en aquellos apartados marcados con (*)), y representarlas en el plano complejo:
 - a) $\sqrt[4]{1+i}$
- (Soluc: \$\frac{9}{2} 11 250 \$\frac{9}{2} 101 250 \$\frac{9}{2} 191 250 \$\frac{9}{2} 281 250)
- **b**) $\sqrt[3]{1-i}$
- (Soluc: \$\sqrt{2} 105°; \$\sqrt{2} 225°; \$\sqrt{2} 345°)
- (*) c) $\sqrt[4]{\frac{-4}{1-\sqrt{3}i}}$
- (Soluc: \$\sqrt{2} 600; \$\sqrt{2} 1500; \$\sqrt{2} 2400; \$\sqrt{2} 3300\)
- d) $\sqrt[3]{\frac{-1+3i}{2}}$
- (Soluc: $\sqrt[6]{2}$ 45°; $\sqrt[6]{2}$ 165°; $\sqrt[6]{2}$ 285°)
- (*) e) $\sqrt[3]{-i}$
- Soluc: i; $-\frac{\sqrt{3}}{2} \pm \frac{1}{2}i$
- 60. Resolver las siguientes ecuaciones en el campo de los complejos. Dibujar los afijos de las raíces:
 - a) $x^3 + 8 = 0$
- (Soluc: -2, $1\pm\sqrt{3}i$)
- **b)** $x^4 16 = 0$
- (Soluc: ±2, ±2i)

- **d)** $x^4 + 1 = 0$ $\left(\text{Soluc } : \pm \frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2} i \right)$

VECTORES EN EL PLANO ACTIVIDAD 8.

Angulo de dos vectores:

33. Calcular el ángulo formado por los siguientes pares de vectores, y dibujarlos (cada apartado en diferentes ejes):

a)
$$u = (2,1)$$
 y $v = (1,3)$

(Soluc: 45°)
$$\overrightarrow{x} = (-5,12) \ y \ \overrightarrow{y} = (8,-6)$$
 (Sol: $\cong 149^{\circ} \ 29'$) $\xrightarrow{}$ (Soluc: 30°) \overrightarrow{f} $\overrightarrow{u} = (2,1) \ y \ \overrightarrow{v} = (-9,3)$ (Soluc: 135°)

b)
$$\overrightarrow{u} = (\sqrt{3}, 1) \overrightarrow{v} \overrightarrow{v} = (1, \sqrt{3})$$

f)
$$\overrightarrow{u} = (2,1) \ y \ v = (-9,3)$$

Problemas con parámetros:

46. Dados los vectores $\overrightarrow{u} = (2,-1)$ y $\overrightarrow{v} = (a,3)$, calcular **a** de modo que:

a) u v v sean ortogonales

(Soluc: a=3/2)

b) $\overrightarrow{u} \overrightarrow{v} \overrightarrow{v}$ formen 60°

Soluc: $a = \frac{24 + 15\sqrt{3}}{11}$

c) u v v tengan la misma dirección

(Soluc: a=-6)

47. Dados los vectores $\overrightarrow{a} = (1,-1)$ y $\overrightarrow{b} = (2,m)$, hallar **m** de forma que:

a) a v b sean ortogonales.

(Soluc: m=2)

b) $\overrightarrow{a}_{v} \overrightarrow{b}$ tengan la misma dirección.

(Soluc: m=-2)

c) \overrightarrow{b} sea unitario.

(Soluc: # soluc.)

d) $\overrightarrow{a} y \overrightarrow{b}$ formen 45°

(Soluc: m=0)

SEGUNDA PRUEBA:

GEOMETRÍA ANALÍTICA EN EL PLANO ACTIVIDAD 9.

- **31.-** Determinar el punto de corte de : $r = (x, y) = (-3, 2) + \lambda(2, -1)$ $\lambda \in R$, $s = \begin{cases} x = 2 + 3\lambda \\ y = 2 2\lambda \end{cases}$ $\lambda \in R$ sol: (1,0)
- **32.-** En el triángulo A(1,2), B(5,1) y C(3,4) hallar la longitud de la altura sobre BC, la longitud del lado BC, la longitud de la altura y el área del triángulo. Sol: 2x-3y+4=0; $\sqrt{13}$; $10/\sqrt{13}$; $5u^2$
- 33.- Calcular el área del triángulo limitado por las rectas r≡ x-y-1=0; s≡ x+y-3=0; t≡ y-2=0
- **34.-** Hallar "a" y "b" de forma que las rectas r≡ ax+by-1=0 y s≡ 2x-3y+4=0 sean paralelas y r pase por el
- 35.- Hallar "a" para que las tres rectas se corten en un punto:

$$r \equiv \frac{x-1}{1} = \frac{y-1}{-1}$$
; $s \equiv 3x - y - 7 = 0$ y $t \equiv x + ay + 2a = 0$

Sol: a=-9/7

36.- Determinar la recta r que pasa por el punto de corte de las rectas $s = \begin{cases} x = -2 + \lambda \\ y = 5 - 2\lambda \end{cases}$ $\lambda \in R$ y

$$t = \frac{x}{-3} = \frac{y-1}{2}$$
 y es paralela a la recta $u = \frac{x}{1/2} + \frac{y}{-3} = 1$.

- 37.- Los vértices consecutivos de un paralelogramo son A(1,2), B(5,0), C y D. Se sabe que los lados AD y BC son paralelos a la recta $(x,y)=(-7,2)+\lambda(1,1)$ λ CR, y que el punto P(6,4) pertenece a la recta que pasa por C y D. Hallar estos vértices. Sol: C(8,3), D(4,5).
- **38.-** Dadas las rectas r = 4x y 3 = 0, s = x + 2y 12 = 0 y t = x y = 0 hallar:
 - a) Los vértices del triángulo que determinan.

Sol: A(1.1), B(4.4), C(2.5),

b) La ecuación de la altura sobre el lado contenido en la recta t.

d) La longitud de la altura sobre el lado contenido en s.

Sol: x+v-7=0 Sol: √17 .

c) La longitud del lado contenido en r.

Sol: 9/√5

e) Área del triángulo.

Sol: 9/2.

DOMINIOS ACTIVIDAD 10.

1.- Halla el dominio de definición de las siguientes funciones polinómicas y racionales:

a)
$$f(x) = 2x + 1$$

b)
$$f(x) = x^3 - x - 8$$

c)
$$f(x) = x^2 + x + 1$$

d)
$$f(x) = x^9 - 6x^4 + 9$$

e)
$$f(x) = x^5 - 2x + 6$$
 f) $f(x) = (x-1)^3$

f)
$$f(x) = (x-1)^3$$

g)
$$f(x) = \frac{1}{7-3x}$$

h)
$$f(x) = \frac{1}{4x^2 - 1}$$

i)
$$f(x) = \frac{7}{x^2 - 5}$$

$$f(x) = \frac{1}{x^3 + 1}$$

k)
$$f(x) = \frac{1}{x^4 - 1}$$
 l) $f(x) = \frac{7x + 9}{x^3 + 8}$

1)
$$f(x) = \frac{7x+9}{x^3+8}$$

2.- Halla el dominio de definición de las siguientes funciones irracionales:

a)
$$f(x) = 6x - 2\sqrt{x} + 8$$

1)
$$f(x) = \sqrt{-2x^2 + 5x - 3}$$

$$f(x) = -4 + \sqrt{x-1}$$

b)
$$f(x) = \sqrt{2+x} - \sqrt{3-x}$$

m)
$$f(x) = \sqrt{3x - x^2 + 4}$$

$$\mathbf{w}) \quad f(x) = \sqrt{4 - 2x}$$

c)
$$f(x) = \sqrt{\frac{x+3}{x-2}}$$

n)
$$f(x) = \frac{1}{\sqrt{x}}$$

n)
$$f(x) = \frac{1}{\sqrt{x}}$$
 x) $f(x) = \sqrt{\frac{x^2}{x-1}}$

3.- Halla el dominio de las siguientes funciones:

a)
$$f(x) = \ln(-3x + 2)$$

$$f(x) = \log\left(\frac{x+7}{x}\right)$$

$$f(x) = \log\left(\frac{x+7}{x}\right) \qquad \qquad f(x) = \frac{2^x}{2^x - 4}$$

$$f(x) = \log \sqrt{-3x}$$

k)
$$f(x) = \frac{2x-9}{\log \sqrt{x+3}}$$
 s) $f(x) = \sqrt{e^x - 1}$

$$f(x) = \sqrt{e^x - 1}$$

c)
$$f(x) = \ln(5 - x^2)$$

1)
$$f(x) = 5^{x-2}$$

$$f(x) = \sqrt[3]{e^x - 1}$$

ACTIVIDAD 11. OPERACIONES CON FUNCIONES

5.- Dadas las siguientes funciones, efectúa las operaciones que se indican, indicando el dominio de la función resultante:

$$f(x) = \frac{1}{x^2 - 4} \qquad g(x) = x^2 - 6 \qquad h(x) = \frac{6x}{x^2 - 4} \qquad p(x) = \sqrt{x + 1} \qquad j(x) = \frac{x - 1}{x + 1}$$

$$k(x) = \frac{x + 2}{x^2 - 1} \qquad l(x) = \sqrt{x^2 - 4x + 3} \qquad m(x) = x - 4 \qquad s(x) = \frac{3 - x}{x - 1} \qquad r(x) = \frac{2x - 1}{x + 3}$$

$$g(x) = x^2 - 6$$

$$h(x) = \frac{6x}{x^2 - 4}$$

$$p(x) = \sqrt{x+1}$$

$$j(x) = \frac{x-1}{x+1}$$

$$k(x) = \frac{x+2}{x^2 - 1}$$

$$(x) = \sqrt{x^2 - 4x + 3}$$

$$m(x) = x - 4$$

$$s(x) = \frac{3-x}{x-1}$$

$$y(x) = \frac{1}{x+3}$$

a)
$$f+g$$

d)
$$j+k$$
 g) $j-r$ j) $j-s$ m) $h \cdot k$ p) $j \cdot s$ s) k/s e) $g \circ m$ h) $m \circ g$ k) $f \circ m$ n) $m \circ j$ q) $p \circ r$ t) s^{-1}

$$q$$
) $j-r$

$$i)$$
 $j-s$

$$h \cdot k$$

$$\mathbf{p}$$
) $i \cdot s$

b)
$$g/p$$

$$g \circ m$$

$$m \circ g$$

$$f \circ m$$

$$p \circ r$$

c)
$$p \circ j$$

$$r \circ s$$

1)
$$m^{-1}$$

$$o)$$
 j^{-1}

$$\mathbf{u}$$
) g^{-1}

ACTIVIDAD 12. COMPOSICIÓN DE FUNCIONES E INVERSA

8.- Sean las funciones: f(x) = 3x + 2 y $g(x) = \frac{x+3}{2x+1}$, calcular: **a)** $g \circ f$; **b)** $f \circ g$

Sol: $(g \circ f)(x) = g(f(x)) = g(3x+2) = \frac{3x+5}{6x+5}$ $(f \circ g)(x) = f(g(x)) = f(\frac{x+3}{2x+1}) = \frac{7x+11}{2x+1}$

9.- Dadas las funciones: $f(x) = \frac{1}{2x-1}$; $g(x) = \frac{2x-1}{2x+1}$ y $h(x) = \frac{1}{x}$, calcular: **a)** $g \circ f$; **b)** $f \circ g$; **c)** $h \circ g \circ f$; **d)**

 $h \circ f \circ g$; **e)** f^{-1} ; **f)** Probar que $f^{-1} \circ f = I$; **g)** Probar que: $f \circ f^{-1} = I$

Sol: $a)(g \circ f)(x) = \frac{3-2x}{2x+1}; b)(f \circ g)(x) = \frac{2x+1}{2x-3}; c)(h \circ g \circ f)(x) = \frac{2x+1}{3-2x}; d)(h \circ f \circ g)(x) = \frac{2x-3}{2x+1}; d)(h \circ g)(x) = \frac{$

10.- Dadas las funciones: $f(x) = \frac{x+2}{2x+1}$ y $g(x) = \sqrt{x}$, Calcular: **a)** $g \circ f$, **b)** $f \circ g$, **c)** f^{-1} , **d)** Probar que $f^{-1} \circ f = I$

Sol: $a)(g \circ f)(x) = \sqrt{\frac{x+2}{2x+1}}; b)(f \circ g)(x) = \frac{2\sqrt{x+2}}{2\sqrt{x+1}}; c)f^{-1}(x) = \frac{2-x}{2x-1}$

LÍMITES Y CONTINUIDAD ACTIVIDAD 13.

27.- Calcula los límites:

27.- Calcula los límites:
a)
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 4x}{-5x - 2x^3}$$
 i) $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{7 + x} - 3}$ p) $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x^2 - 4}$
b) $\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^2 + 3x + 2}$ j) $\lim_{x \to 0} \frac{5x}{\sqrt{1 - x} - 1}$ q) $\lim_{x \to +\infty} \frac{8x - \sqrt{16x^2 - 3x}}{x^2 + 3x + 2}$ r) $\lim_{x \to 0} \frac{x^3 + 2x^2 - x - 2}{x^3 + x^2 - 2x}$ r) $\lim_{x \to 0} \frac{x^3 - 6x^2 + 11x - 6}{x^3 + 4x^2 + x - 6}$ d) $\lim_{x \to +\infty} \frac{3x^2 - x + 1}{\sqrt{x^6 + 1}}$ l) $\lim_{x \to 3} \frac{x^3 - 2x^2 - 2x - 3}{x^3 - 4x^2 + 4x - 3}$ s) $\lim_{x \to 0} \frac{x^2 - ax}{x^2 + ax - 2a^2}$ e) $\lim_{x \to 1} \frac{5x}{x^3 - 4x^2 + 4x - 1}$ n) $\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x + 3} - 2}$ t) $\lim_{x \to 0} \frac{x + x^2}{2 - \sqrt{x + 4}}$ l) $\lim_{x \to 0} \frac{x^3 + x^2 + 5}{x^3 + x - 3}$ u) $\lim_{x \to \infty} \frac{x^3 + 1}{x^3 + x^2}$ u) $\lim_{x \to \infty} (x^3 + 1 - x^4 + x + 1)$ g) $\lim_{x \to \infty} \sqrt{1 + x} - \sqrt{1 - x}$ fi) $\lim_{x \to \infty} (\sqrt{4x^2 + x} - 2x)$ v) $\lim_{x \to \infty} (\sqrt{4x^2 - 5} - (2x - 3))$ lim $\lim_{x \to +\infty} (\sqrt{4x^2 + 4x + 2} - \sqrt{4x^2 - 5x + 2})$

c)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 8}{2x^2 - 5}$$
 k) $\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^3 + x^2 - 2x}$ r) $\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^3 + 4x^2 + x - 6}$

e)
$$\lim_{x \to 1} \frac{5x}{x - 1}$$
 m) $\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x + 3} - 2}$ t) $\lim_{x \to 0} \frac{x + x^2}{2 - \sqrt{x + 4}}$

f)
$$\lim_{x \to 1} \frac{1}{x^3 - 4x^2 + 4x - 1}$$
 n) $\lim_{x \to 1} \frac{1}{x^3 + x - 3}$ u) $\lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{1}{x^3 + x} \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 + x} - 2x \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$ 1. $\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3$

h)
$$\lim_{x \to +\infty} \left(\sqrt{x+4} - \sqrt{x-4} \right)$$
 o) $\lim_{x \to +\infty} \frac{1+2x}{\sqrt{1+x^2}}$ w) $\lim_{x \to +\infty} \left(\sqrt{4x^2 + 4x + 2} - \sqrt{4x^2 - 5x + 2} \right)$

Sol: a) -1/2; b)0; c) $\frac{\sqrt{2}}{16}$; q) $+\infty$; r)1/6; s) 1/3; t) -4; u) 0; v)3; w) 9/4.

26. Calcular cuánto debe valer a para que la siguiente función sea continua ∀ℜ:

$$f(x) = \begin{cases} x+1 & \sin x \le 2 \\ 3-ax^2 & \sin x > 2 \end{cases}$$

(Soluc: a=0)

27. Se considera la función

$$f(x) = \begin{cases} Ln x & si \ 0 < x < 1 \\ ax^2 + b & si \ 1 \le x < \infty \end{cases}$$

Determinar los valores de a y b para que f(x) sea continua y f(2)=3 (Soluc: a=1 y b=-1)

29. Dada la función

$$f(x) = \begin{cases} x+3 & \text{si } x \leq 1 \\ mx+n & \text{si } 1 < x \leq 3 \\ -x^2+10x-11 & \text{si } x > 3 \end{cases}$$

hallar los valores de m y n para que f(x) sea continua (puede ser útil dibujar la gráfica). (Soluc: m=3, n=1)

30. Ídem:

$$f(x) = \begin{cases} -2x+1 & \text{si } x \leq -2 \\ ax+2 & \text{si } -2 \leq x \leq 2 \\ x^2+b & \text{si } x \geq 2 \end{cases}$$

(Soluc: a=-1/2, b=-3)

31. Ídem:

$$f(x) = \begin{cases} -x^2 + a & \text{si } x < -1 \\ x^2 - 4 & \text{si } -1 \leq x < 2 \\ \ln(x - b) & \text{si } x \geq 2 \end{cases}$$

(Soluc: a=-2, b=1)

ASÍNTOTAS ACTIVIDAD 14.

Dominio de definición y corte a los ejes

Asíntotas.

Gráfica aproximada.

Dada la curva de ecuación $y = \frac{2x^2 - 5x - 6}{x^2 - x - 2}$, calcular:

Dominio de definición y corte a los eje

1.

b)

c)

2.

a) a)

b)

3.

a) b)

c)

4.

a) b)

c)

5.

b)

c)

Gráfica aproximada.

Dada la curva de ecuación $y = \frac{x-2}{x^2 + 2x - 3}$, calcular:

Dominio de definición y corte a los ejes

Gráfica aproximada.

Dada la curva de ecuación $y = \frac{x+1}{x^2 + x - 2}$, calcula

Dominio de definición y corte a los ejes

Asíntotas.

Gráfica aproximada.

Dada la curva de ecuación $y = \frac{x^2 - 1}{}$, calcula

Dominio de definición y corte a los ejes.

Asíntotas.

Gráfica aproximada.

Observación: puedes usar Geogebra para comprobar que lo has hecho correctamente.

ACTIVIDAD 15. **DERIVADAS Y GRAFICAS**

Utilizando en cada caso la fórmula más apropiada de la tabla de derivadas, hallar la derivada simplificada de las siguientes funciones compuestas:

a)
$$y = \frac{1}{x^2}$$

a)
$$y = \frac{1}{x^2}$$
 b) $y = \frac{1}{x^2 + 2x - 3}$ **c)** $y = \sqrt{x^2 + 1}$ **d)** $y = (x^2 - 3)^2$

c)
$$y = \sqrt{x^2 + 1}$$

d)
$$y = (x^2 - 3)^2$$

e)
$$y = \frac{2}{x^3}$$

f)
$$y = (x^2 + x + 1)^3$$

g)
$$y = \sqrt[3]{2x^3 - 3}$$

f)
$$y = (x^2 + x + 1)^3$$
 g) $y = \sqrt[3]{2x^3 - 3}$ **h)** $y = \frac{1}{\sqrt{x^2 + 4}}$ **i)** $y = 3(x^2 + 1)^{10}$ **j)** $y = 2(3x^2 - 1)^4$

i)
$$y = 3(x^2 + 1)^{10}$$

j)
$$y = 2(3x^2 - 1)^4$$

k)
$$y = \frac{2}{(x^2 + 1)^3}$$

(Sol: **a)**
$$y' = \frac{-2}{x^3}$$
; **b)** $y' = -\frac{2x+2}{(x^2+2x-3)^2}$; **c)** $y' = \frac{x}{\sqrt{x^2+1}}$; **d)** $y' = 4x^3 - 12x$; **e)** $y' = \frac{-6}{x^4}$; **f)** $y' = 3(2x+1)(x^2+x+1)^2$; **g)** $y' = \frac{2x^2}{\sqrt[3]{(2x^3-3)^2}}$; **h)** $y' = \frac{-x}{\sqrt{(x^2+4)^3}}$; **i)** $y' = 60x(x^2+1)^9$; **j)** $y' = 48x(3x^2-1)^3$; **k)** $y' = \frac{-12x}{(x^2+1)^4}$

12. Derivar las siguientes funciones, utilizando en cada caso el procedimiento más apropiado, y simplificar:

a)
$$y = \frac{x^2 + 1}{x^2}$$

a)
$$y = \frac{x^2 + 1}{x^2}$$
 b) $y = \frac{2x^2 - 3x + 1}{x}$ **c)** $y = \frac{x + 1}{1 - x}$ **d)** $y = \frac{x^2}{\sqrt{x}}$

c)
$$y = \frac{x+1}{1-x}$$

d)
$$y = \frac{x^2}{\sqrt{x}}$$

e)
$$y = \frac{3x^4 - 2x^2 + 5}{2}$$

f)
$$y = (3x^2 + 5)^5$$
 g) $y = \frac{2x}{x^2 + x + 1}$

g)
$$y = \frac{2x}{x^2 + x + 1}$$

(Sol: a)
$$y' = \frac{-2}{x^3}$$
; b) $y' = \frac{2x^2 - 1}{x^2}$; c) $y' = \frac{2}{(1-x)^2}$; d) $y' = \frac{3\sqrt{x}}{2}$; e) $y' = 6x^3 - 2x$; f) $y' = 30x(3x^2 + 5)^4$

g)
$$y' = \frac{-2x^2 + 2}{(x^2 + x + 1)^2}$$

Ecuación de la recta tangente:

14. Hallar la ecuación de la recta tangente a las curvas en los puntos que se indican:

a)
$$f(x)=3x^2+8$$
 en x=1

(Sol:
$$6x-y+5=0$$
) | c) $f(x)=x^4-1$ en $x=0$

(Sol:
$$y=-1$$
)

b)
$$y=2x^5+4$$

d)
$$f(x) = \frac{x^3 - 2}{x^2 - 3}$$
 en $x = 2$

(Sol:
$$y=-12x+30$$
)

Intervalos de crecimiento. M y m. Representación de funciones:

18. Hallar los intervalos de crecimiento y decrecimiento y los M y m de las siguientes funciones. Representarlas gráficamente.

a)
$$f(x) = x^2$$

c)
$$y = x^3 - 3x^2 + 1$$

d)
$$f(x) = x^3 - 6x^2 + 9x - 8$$

e)
$$f(x) = x^3 - 4x^2 + 7x - 6$$

f)
$$f(x) = x^3$$

g)
$$f(x) = x^4 + 8x^3 + 18x^2 - 10$$

h)
$$y = x^3 - 3x^2 - 9x + 1$$

b)
$$f(x) = x^4 - 2x$$

i)
$$f(x) = x^4 - 4x^3 + 1$$

i)
$$f(x) = x^4 - 4x^3 + 1$$

j) $y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 3$
k) $y = 2x^3 - 9x^2$
l) $f(x) = x^3 - 6x^2 + 9x$

k)
$$v=2x^3-9x^3$$

I)
$$f(x)=x^3-6x^2+9x^2$$

m)
$$y=x^3-12x$$

- (Soluc: a) $\varnothing(0,\infty)$ $\hookrightarrow(-\infty,0)$; b) $\varnothing(-1,0)U(1,\infty)$ $\hookrightarrow(-\infty,-1)U(0,1)$; c) $\varnothing(-\infty,0)U(2,\infty)$ $\hookrightarrow(0,2)$; d) $\varnothing(-\infty,1)U(3,\infty)$ $\hookrightarrow(1,3)$; e) $\varnothing \ \forall x \in \mathbb{R}$, f) $\varnothing \ \forall x \in \mathbb{R}$, g) $\odot (-\infty, 0) \ \varnothing (0, \infty)$; h) $\varnothing (-\infty, -1) U(3, \infty) \ \odot (-1, 3)$; i) $\odot (-\infty, 3) \ \varnothing (3, \infty)$
- 20. Ídem para:

a)
$$f(x)=x^3-3x$$

b)
$$y = \frac{x+2}{x-1}$$
 c) $y=x^4-2x^2$

c)
$$y=x^4-2x^2$$

d)
$$y = \frac{2x}{x^2 + 1}$$

e)
$$f(x)=x^3-3x^2$$

f)
$$f(x) = \frac{x^2}{x^2 + 1}$$

g)
$$y = -x^3 + 12x$$

f)
$$f(x) = \frac{x^2}{x^2 + 1}$$
 g) $y = -x^3 + 12x$ **h)** $f(x) = \frac{9}{x^2 - 9}$

i)
$$f(x) = \frac{16 - 8x}{x^2}$$

d)
$$y = \frac{2x}{x^2 + 1}$$
 e) $f(x) = x^3 - 3x^2$
i) $f(x) = \frac{16 - 8x}{x^2}$ **j)** $y = \frac{x}{x^2 + x + 1}$

Observación: puedes usar Geogebra para comprobar que lo has hecho correctamente.

MODELO DEL PRIMER PARCIAL DE PENDIENTES

1) (10p) Opera simplificando al máximo:

$$(2\sqrt{5}-3)^2-(2\sqrt{5}+3)^2$$

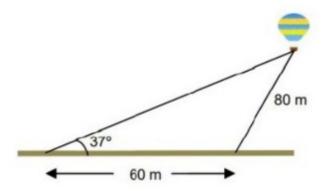
2) (10p) Resuelve por GAUSS el sistema:

$$\begin{cases}
-x-3y+2z = 4 \\
2x+y-3z = 0 \\
-3x+y+6z = 2
\end{cases}$$

3) (10p) Resuelve la siguiente ecuación logarítmica:

$$\frac{\log(x+1)}{\log(x-1)} = 2$$

4) (10p) Resuelve la siguiente ecuación exponencial:


$$2^{2+x} - 2^{1+x} + 2^x = \frac{1}{2}$$

5) (10p) Resuelve la siguiente ecuación trigonométrica:

$$\cos(2x) - 3senx + 1 = 0$$

6) (10p) Resuelve en el plano complejo la ecuación $z^3 + 8 = 0$.

7) Un globo aerostático está sujeto al suelo mediante dos cables de acero, en dos puntos que distan 60m. El cable más corto mide 80m y el ángulo que forma el otro cable con el suelo es de 37º. Hallar la altura del globo (5p) y la longitud del cable más extenso (5p).

8) (10 p) Calcula el ángulo formado por los vectores $\vec{u}(2,1)_{y} \vec{v}(1,2)$

MODELO DEL SEGUNDO PARCIAL DE PENDIENTES

- 1) Dados los puntos A(1,5) y B(3,-2), hallar:
 - a) (5p) La ecuación general de la recta que pasa por A y B.
 - b) (5p) La ecuación explícita de la mediatriz del segmento AB.
- 2) Calcular el dominio de las siguientes funciones:

a) **(4p)**
$$f(x) = \frac{1}{4x^2 - x}$$

b) **(6p)**
$$g(x) = \frac{1}{\sqrt{4-x^2}}$$

3) (10p) Calcular el siguiente límite:

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{\sqrt{x + 2} - 1}$$

- 4) (10p) Hallar la ecuación general de la recta tangente a la curva $y = 3x^2 + 8$ en el punto de abscisa x=1.
- 5) Hallar la derivada de las siguientes funciones:

a) (5p)
$$f(x) = \ln \frac{x+1}{x}$$

$$g(x) = \frac{x^2}{x-1}$$

6) (6p) Hallar los intervalos de crecimiento y decrecimiento y los extremos relativos de la función:

$$y = x^3 - 3x^2 + 1$$

Hacer una gráfica (4p) aproximada.